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Generation of Conjugate Directions 
for Unconstrained Minimization without Derivatives * 

By Larry Nazareth 

Abstract. We analyze a technique for unconstrained minimization without derivatives. 

This stems from two theorems proved by M. J. D. Powell. A particular version, which 

we consider in detail, is related to the Jacobi process for finding the eigensystem of a 

symmetric matrix, and the two processes, although different, help to illuminate one 

another. We study convergence of the search directions to mutual conjugacy, cases 
when cycling occurs and identify a broad class of 'cyclic patterns' for which conver- 

gence to mutual conjugacy is proven. 

1. Introduction. Given a method for unconstrained minimization that requires 
knowledge of derivatives, it is usually possible to derive a derivative-free method by 
suitably approximating derivatives by differences. However, many methods have been 
proposed which are not of this type; and of these, the method of Powell [1] seems to 
be the most widely used. This maintains a set of n search directions (where n is the 
dimension of the problem), and these are suitably updated so as to converge to a mutually 
conjugate set in a bounded number of steps. The method thus has the advantage of 
quadratic termination but suffers two drawbacks. Firstly, there is a danger of linear 
dependence in the search directions even for a quadratic; and precautions taken to ensure 
that the directions span the complete space of variables often adversely affect efficiency. 
Zangwill [2] and Brent [3] have both proposed techniques to overcome this. Secondly, 
generation of conjugate directions is tied to accuracy of the line searches, which must, 
in theory, be exact. 

Brodlie's method [4] gets around both these difficulties. The search directions 
used are always orthogonal and are updated as the algorithm progresses, so that they 
converge for a quadratic to mutual conjugacy. This updating process is not dependent 
upon accuracy of line searches. Brodlie proves that the algorithm, applied to the qua- 
dratic 4(x) with Hessian A, exactly parallels a cyclic Jacobi process in the sense that 
successive approximations to the set of eigenvectors of A are identical. Unlike Powell's 
method, Brodlie's algorithm does not possess a quadratic termination property, though 
numerical evidence has shown it to be satisfactory in practice. Seeking the set of 
eigenvectors of A as Brodlie's algorithm does would also seem unnecessarily costly, since 
the directions they define are unique when eigenvalues of A are distinct. 

Here we discuss some theoretical aspects of an algorithm that relaxes the require- 
ment that a unique set of directions be generated but shares the advantages of Brodlie's 

Received July 9, 1974; revised January 27, 1975. 
AMS (MOS) subject classifications (1970). Primary 65K05, 90C30. 
*The material presented here is taken from Part II of the author's Ph. D dissertation written 

under the supervision of Dr. B. N. Parlett. The research was supported by the Office of Naval 
Research Contract N00014-A-0200-1017. 

Copyright 0 1976, American Mathematical Society 

115 



116 LARRY NAZARETH 

method. It is based upon a technique for generating conjugate directions developed by 
Powell [5]. The two theorems that form the basis of this technique are stated in Section 2, 
and we develop a particular algorithm that bears some similarity to the cyclic Jacobi 
process. This is a straightforward generalization of the two-variable case considered by 
Powell. In subsequent sections we study certain central issues which pertain to this 
technique, namely, convergence of the search directions to mutual conjugacy and cases 
when cycling occurs; finally we develop a class of 'cyclic patterns' for which convergence 
to mutual conjugacy is proven. 

2. The Algorithm. 
2.1. Powell's Theorems. We use the notation AD to mean the absolute value of 

the determinant of the matrix D. 
THEOREM 2.1 (POWELL, 1964). Given a quadratic function ;(x) = a + bTx + 

?2xTAx where A is positive definite and symmetric, let (d1, ... , dn) be any set of n 
directions satisfying the normalization conditions 

(2.1a) dJTAd. = 1, i = 1, 2, . . ., n, 

i.e., di are defined to be of unit length in the A-norm. If D is the matrix whose columns 
are the directions (dl, . . . , dn), then the maximum value of AD is attained if and only 
if the directions di (i = 1, ... ., n) are mutually conjugate. U 

THEOREM 2.2 (POWELL, 1972). Let (d1,. . . , dn) be any set of n directions 
normalized to satisfy (2.1a). Let D be the matrix whose columns are the directions 
(dl, . . . , dq) and let 2 be any orthogonal matrix. 

Let the columns of the matrix D given by D = DQ, define a new set of directions 

(d, .. dn) 
Normalize each of the directions di so that each is of unit length in the A-;'zorm, 

thus obtaining directions di' and matrix D* = (d*,.. ., d*), where di = d-I(d TAd )lP. 
Then 

(2. lb) AD* AD 

where A is defined as above. El 

For proofs see Powell [5]. 
2.2. Normalization. Suppose (d,... ., din) are a set of unnormalized search direc- 

tions at the current iterate xC. In order to satisfy the normalization condition (2.1 a), 
each direction di must be divided by (dfAd )I2 . For a quadratic i(x) this may be 
obtained by estimating the value of the second derivative of ;(x) at xc in the direction 

di, since: 

i(xc + Ad- =-4(xc) + X(b + Ax )Tdi + (X2/2)d fAd1 

and 

(x c - Ad-) = lI>(xc) - X(b + Ax c)Tdi + (X2/2)d[TAdi. 

Thus 

d-TAd- Ji =(xc + Xdi) - 2lP(xc) + ik(xc - Xid) 
dA1 =2 



GENERATION OF CONJUGATE DIRECTIONS 117 

Similar results hold approximately for a general smooth function O(x) with A replaced by 
A(xc) and 0 <X < 1. 

2.3. The Resulting Algorithm and Questions to be Discussed. The algorithm 
derived by Powell from these two theorems is as follows: A set of n search directions is 
maintained. At any iteration a search is conducted in sequence along each direction of 
this set, and the current estimate of the minimum improved in some way. It is an easy 
matter to estimate second derivatives along each direction. Thus, each direction may 
be normalized and the set of search directions revised by post-multiplying by a suitably 
chosen orthogonal transformation. This completes an iteration of the algorithm. 

We shall denote the unnormalized search directions at the start of iteration k by 
the columns of D5(k), the normalized search directions by columns of D(k) and the 
orthogonal transformation used by i2(k). In general, knowledge of the off-diagonal ele- 
ments of D(k)TAD(k) is not explicitly available without further work. When the above 
algorithm is applied to a quadratic function ;(x), convergence of D(k) to mutual con- 
jugacy is not assured. The optimal choice of i(k) are the eigenvectors of D(k)TAD(k). 
These are expensive to obtain. Thus one must restrict attention to a well chosen class 
of orthogonal transformations from which U(k) is selected. Certain questions then arise 
quite naturally. Provided that no search direction is neglected, will convergence of the 
search directions to mutual conjugacy for a quadratic always occur? If not, can cases 
be exhibited for which one obtains nonconvergence or cycling? Can convergence always 
be be assured by judiciously choosing, at each iteration, an orthogonal transformation 
from the class? What is the ultimate rate of convergence? Settling these questions is 
crucial to understanding the algorithm's behavior, particularly in the neighborhood of a 
minimum, where it will usually be well approximated by a quadratic. 

2.4. The Algorithm Arising From Use of Plane Rotations. Let the orthogonal 
transformation U(k) be selected from the class of plane rotations. This is a worthwhile 
context within which to investigate some of the above questions in the light of Brodlie's 
algorithm, and because this will clarify the use of more general classes of orthogonal 
transformations. 

Suppose we are dealing with a quadratic function ;(x) and are given at a typical 
step k, a set of search directions d(k), . . , d(k) normalized to be of unit length in the 
A-norm. 

Now, revising D(k) by means of a plane rotation say in the (p, q) plane through 
angle 0, gives unnormalized directions D(k+ 1) satisfying 

jd(k+l) = d(k) COS 0 + d(k) sin 0, 
p p q 

(2.4a) [(k+l) - -d(k) sin 0 + d(k) cos 0, 
q p q 

d(k+l) = d(k) for allr /por q. r r 

The best 0 to choose is the angle that makes d(k+ 1) and d(k+ 1) conjugate. Thus p q 

(2.4b) tan 20 = 2dpk)Ad(k)I(d(k)Ad(k) - d(k)Ad(k)). 

Since d(k) and d(k) are normalized, the denominator = 0. Thus 0 = ? 
7r/4 unless p q 

dP)Ad(k) = 0, in which case any 0 will do. p q 
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We note that knowledge of the magnitude of d(k)Ad(k) is not needed. p q 
Thus, revising d(k) and d(k) corresponds to post-multiplication by a member of q 

the two element set of fixed orthogonal matrices {Upq, UT} where 
~~ pq _ ii ,11 

UPP upq 

uqp uqq~j X l- 
(2.4c) 

uii = I =porq, 

uij = 0 otherwise. 

Thus, the class of orthogonal transformations used is given by 

(2.4d) S{Upq, UT: V(p, q) s.t. 1< p < q < n}. 

Drawing an analogy with the classical Jacobi eigenvalue process would suggest that, 
at each iteration, one choose the pair (p, q) to be revised that corresponds to the maxi- 
mum off-diagonal element of D(k)TAD(k). From a practical standpoint, however, this 
is not feasible since off-diagonal elements of D(k)TAD(k) are not available without 
much additional work. Henceforth, as in the cyclic Jacobi process we consider the 
Cyclic Selection Rule. This selects successive members of a cyclic pattern, i.e., a per- 
mutation of the n(n - 1)/2 pairs (1, 2), (1, 3), . . . , (1, n), (2, 3), - .., (2, n), ... 

(n - 1, n). A sweep of n(n - 1)/2 iterations completes a cycle, and a fresh cycle is 
then started. In this case, knowledge of off-diagonal elements of D(k)TAD(k) is not 
required for choosing (p, q) or &2(k), in contrast to Brodlie's algorithm. 

2.4.1. The algorithm outlined in 2.3 then specializes to Algorithm C below, whose 
kth iteration, initiated with a set of directions (_I4k), . . ., djk)), is as follows: 

Algorithm C. (i) Choose a pair (p, q) (called the current pair) according to some 
cyclic pattern. 

(ii) Conduct a linear search, not necessarily exact, in sequence along the pth 
and qth search directions and improve the estimate of the minimum. Normalize these 
two directions by estimating the second derivative along each direction during the 
search (as discussed in 2.2) thus obtaining directions d(k) and d(k). All other directions 
remain unaltered. 

(iii) Post-multiply the matrix whose columns consist of the set of search direc- 
tions by Q2(k) = Upq or UT This gives directions UPq 

pq- 

(2.4e) J(k 1) = I (d(k) T d(k)), j(k+ 1) 1 k(k) + d(k)) P N/2- P 
qJ q y-j/d-,k +d /) 

and all other directions remain unaltered. Then start iteration (k + 1). El 
The algorithm is initiated with a set of linearly independent directions dj0),. 

j(1) and terminates using, at step (ii), some suitable criterion, based upon change in 
current estimate of the minimum value and change in function value during a complete 
cycle. See e.g. Brodlie [4]. 

2.5. Basic Relations. Consider Algorithm C applied to a quadratic iP(x). Let 
DM1) be the initial normalized set of search directions and D(k) the normalized directions 
at the start of iteration k. These are not explicitly maintained by Algorithm C but are 
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introduced for the purpose of analysis. Let us postulate also a diagonal normalizing 
matrix N(k), again not explicitly maintained, which restores the search directions at the 

end of iteration k to unit length in the A-norm. 
Then 

(2.4f) D(*) = D('1)Q( 0)N( 0 (2 )N(2 ) .. * * (k - 1 )N(k - 1 ) 

and 

A(k) = D(k)TAD(k) = N(k 1()k (k-1)T 
(2.4g) N(1)?(1)TD(1)TAD(1)?(1)N(l). . (k-1)j(k-1) 

We want A(k) in (2.4g) to converge to the unit matrix I, whence D(k) must tend, 
as k -+ oo, to a matrix whose columns are mutually conjugate. Henceforth, when we 

say that the set of search directions converge to mutual conjugacy we mean that 

A(k) - I. Note that this does not imply that the search directions converge to a fixed 

set of mutually conjugate directions. 
After carrying out the kth iteration of Algorithm C with (p, q) the current pair 

for a quadratic ;(x) = a + bTx + ?hXTAx, where A > 0 

d(*) + d (*)k ) +d (k) + d (*) p -q and ? d( 
(2.4h) d(k + l)= dk)+d(k) and d(k+)= = 

jjId (k) ? d (k)I q 11?d (k) ? d~k)IA 

where both upper or both lower signs are taken together. Also, 

d(+ 1) = d(k) for all r * p or q. r r rarpoq 

Given any such r, we have 

Id(k+l =)Ad(k+)I ( Ad() ? d(k)Ad(k))(P) + (k)IIA) 

Id(k+ l)Ad(k + 1)I = (+PdUp)Ad(*) + dk)Ad(k))I(IId?Pk) + dk) IIA). 

Definition 1. We call Idk)Ad&k)l the weight of pair (i, j) at iteration k. Note 

that in defining the weight we are using the normalized search directions. 
Definition 2. If (p, q) is the current pair at the kth iteration, then for any r # p 

or q, we say that (p, r) and (q, r) are linked during the kth iteration. 

3. Convergence Using an Arbitrary Cyclic Pattern. 
THEOREM 3.1. Consider Algorithm C applied to a quadratic 4(x) using an arbi- 

trary cyclic pattern. Then there always exists a sequence ?(1), Q2(2), ..., (kI), .... 

chosen from S (with Q2(k) e {Upq T Upq} if (p, q) is the current pair) s.t. the search 

directions converge to mutual conjugacy. 
Two lemmas stated below are necessary. Proofs of the lemmas and of Theorem 

3.1 may be found in Nazareth [6] and, being quite straightforward, are not included 

here. Note that Theorem 3.1 is nonconstructive since it does not enable one to know 

beforehand whether a particular policy for choosing Q2(k) will succeed. 
LEMMA 3.1. Let (p, q) be the current pair at iteration k. Suppose Id k)Ad(k) 

> ,for some pair (p, r), r / q. 
Then at least one of the two choices, Q2(k) - Upq and Q2(k) = UT must give direction that sipq 

directio ns that satis fy IdPk+l1)AdPk+l)I > u /2. 
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COROLLARY. If the weight on pair (p, r) exceeds p and the pair (p, q) is revised, 
then the weight on at least one of the pairs (p, r) and (q, r) must exceed ,/2 after the 

revision, for A(k) E {Upq, UTq}. 

LEMMA 3.2. Suppose at iteration t the current pair is (p, r), 2(t) E {Upr, UT } 
and Id(')Ad(t) I = y, where 0 <'y < 1. Then 

(3.1 a) AD(t+ 1) = AD(t)(1 - ,2)1/2 

where AD(t) denotes the absolute value of the determinant of D(t). 

4. Cycling in Algorithm C. A misguided policy for choosing E?(k) can lead to 

cycling of the elements of D(k)TAD(k). We exhibit an example of this related to one 

published by Hansen [7] for the Jacobi eigenvalue process. Cycling in Algorithm C has 

certain distinctive features not shared by the Jacobi process. 
4.1. Example of Cycling. Given a quadratic function in four variables, let us seek 

its minimum using Algorithm C, with cyclic pattern 

(4.1a) (2, 3), (1, 4), (1, 3), (2, 4), (1, 2), (3, 4). 

Suppose that the initial normalized search directions d(1), . d. . 1) satisfy 

0 x 0 

A() = DOl)TADOl) = 0 1 0 x 

x 0 1 0 

0 x 0 1 

with (2, 3) the current pair. 
Use the following sequence of orthogonal transformations chosen from the set S: 

(4.lb) U23U14U1 3U24u12U34U23U14U1 3U24u1T2U34. 

These are then repeated in sweeps of 12 iterations. 

We find that after six iterations 

I1 0 x 0 

(4.1 c) AA(7) = D(7)TAD(7) = x 1 0 , 

O -x O 1 

and after 12 iterations D(1 3)TAD(13) = D(1)TAD(1). 
Thus, the search directions generated by the sequence (4.1b) do not converge to 

mutual conjugacy. 
Note, however, that DM1) and D(13) may be distinct. It is possible that the search 

directions will also cycle. 
If directions that are already conjugate need not necessarily be revised, examples 

of cycling may be constructed for any cyclic pattern containing the subsequence 
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Initial normalized search directions are chosen such that d(Q)Ad(') = dP1)AdP1) - 
j 1 1 m 

x, with all other pairs of directions mutually conjugate. 
When the current pair is not in the above subsequence, then use Q2(k) = J. Such 

pairs remain conjugate throughout. Orthogonal transformations for pairs that are in 

(4.1d) are chosen analogously to the sequence of transformations (4.1b). 
The above example is somewhat unsatisfactory in that search directions d(k) and p 

d(k) that are already conjugate are nevertheless revised. This may be justified on the q 
grounds that the information needed to recognize this is not available to Algorithm C 

without further function evaluations. In Nazareth [6] somewhat more satisfactory 

examples are discussed for which the current pair always has nonzero weight. We also 

discuss the implication of these examples for a threshold policy analogous to that used 

in the cyclic Jacobi process. 
The proofs of Theorem 3.2 and the examples of 4.1 require the use of both posi- 

tive and negative plane rotations through 7T/4 as equally valid choices for LQk. Both 
would be rendered invalid by changing the policy to allow only positive (or only nega- 

tive) rotations through rr/4. However, even for the policy 92(k) = Upq, an example 
exists for which there is no improvement in overall conjugacy during a single complete 

cycle. We refer the reader back to 4.1, where we see that AD(7) = ADO1). 

We may easily construct an example which uses a cyclic pattern containing a sub- 

sequence of the form 

(4.1e) (i, A) (1, m), (1, A G, ( M) 

and for which the policy &2(k) = Upq given an arbitrarily small increase in AD(k) 

during one complete cycle of iterations and no current pair is mutually conjugate 

during this cycle. This means that most of the weight associated with off-diagonal ele- 

ments of D(k)TAD(k) is pushed round ahead of the current pair during this cycle. 

It is for reasons given in this section that proofs of convergence of D(k) to mutual 

conjugacy, using an arbitrary cyclic pattern, are difficult to obtain. 

5. Convergence Proofs for a Restricted Class of Cyclic Patterns. We now show 

that convergence of the search directions to mutual conjugacy can be proven for all 

cyclic patterns within a certain class P. 
The motivation behind choosing this class P is to exclude patterns containing a 

subsequence of the form (4.1e). Note, however, that there exist cyclic patterns which 
do not contain a subsequence (4.1e) and are also not in P. 

5.1. Definition of the Class of Cyclic Patterns P. 
5.1.1. The class P of cyclic patterns is defined recursively using the following 

procedure. This is called with input consisting of a set of directions G and returns with 
a cyclic pattern in L. After the formal definition a detailed illustration is given. 

Procedure P(G, L). Local Variables H, T. 
Step A. Given a set of directions G, partition them into two groups, G1 and G2. 

If G contains only a single member, return. 
Step B. Form a list of pairs as follows: Either 
(i) Pick one member of the first group G1 and pair it with every member of the 
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second group G2 taken in any order. Repeat until all members of G1 are exhausted; or 
(ii) Carry out (i) with GI and G2 interchanged. 
Step C. Call P(G1, H) i.e., carry out a recursive call to Procedure P with the set 

of directions G1 (in place of G). The list of pairs formed is returned from this recur- 
sive call in H. 

Step D. Call P(G2, T) i.e., call P recursively with the set G2. The list from this 
call is returned in T. 

Step E. Place the list of pairs H obtained in Step C at the head of the list formed 
in Step B. Similarly, place the list T at the tail of the list formed in Step B. Return 
with the complete list in L. i 

Any cyclic pattern returned by the above procedure when called with directions 

dj, d2, . . . , dn is contained in the class of cyclic patterns P. An example of a cyclic 

pattern obtained is given in Figure 5.1, using seven directions. If all pairs of directions 
in this example are written as in Figure 5.2, then the cyclic pattern defined in the 
example is given by taking each pair of Figure 5.2 in the order determined by the num- 
ber associated with it. 

5.2. Proof of Convergence. We have not been able to avoid a certain degree of 
technical complexity in this proof. Therefore, to help guide the reader, its principal 
features are first outlined. 

The proof is by contradiction. Suppose, when Algorithm C is applied to a quadratic 

-(x) = a + bTx + ?hxTAx, A > 0, the search directions D(k) do not converge to mutual 
conjugacy for some cyclic pattern e P. Since, from Powell's second theorem (cf. 2.1) D(k) 
is a monotonically nondecreasing bounded sequence, it must tend to a limit as k oo. 

{d1, d2,d ,d7} 

{di, d2, d3, d4} {d5, d6, d7} 

[(2, 6)(2, 5)(2, 7)(3, 5) 
*(3, 7)(3, 6)(1, 5)(1, 6) 

/ \ * ~~~(1, 7) (4, 6) (4, 5) (4, 7)] 

{d,, d2} {d3, d4} {d5, d6} {d7} 

[(1,4)(2, 4) [(6 7)(57)] 
(2, 3)(1, 3)] [(,7(5 ) 

{d1} {d2} {d3} {d4} {d5} {d6} 

[(I, 2)] [(3, 4)] [(5, 6)] 

Pattern defined 

[(12)(14)(24)(23)(13)(34)(26)(25)(27) . . . (46)(45)(47)(56)(67)(57)] 

FIGURE 5.1. Example Illustrating Procedure P 
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T1 R 

X 1 : ~5 2 13 14 15 
\(1,2): (1,3) (1,4) (1,5) (1,6) (1,7) 

\ I4 3 8 7 9 
(2,3) (2,4) (2,5) (2,6) (2,7) 

\ 6 10 12 1 1 
\ (3, 4) (3, 5) (3, 6) (3, 7) 

\ 17 16 18 
\\ (4, 5) (4,6) (4, 7) 

\ 19 ~~21 
\ (5,6) (5,17) 

T2 

FIGURE 5.2 

Now, by Powell's first theorem (cf. 2.1) (AA)- 1/2 is the absolute value of the 
determinant of any matrix whose columns form a normalized set of mutually conjugate 
directions. Since we have assumed that the search directions given by columns of D(k) 
do not converge to mutual conjugacy, LAD(k) must tend to some limit strictly less than 

(A\A)-'/2, say (A\A)- 1/2 - 6, where 6 > 0. 
Further, there must exist a number 3 > 0 s.t. some pair of directions, at every 

iteration, has weight > f3. (With A fixed, this i3 is dependent only on 6.) If not, then 
AD(k) could be made arbitrarily close to (A\A)- 1/2 contradicting our assumption. 

Assume also that a sufficiently large number of iterations have been carried out, 
so that AD(k) > (zA) 1/2 - 6 - e for some positive e as small as we wish, and that 
we are at the start of a fresh cycle of iterations. 

If we can claim that in proceeding through this cycle of iterations we must come 
across some current pair, say (p, q) with weight > M(n):, (where M(n) is a fraction 
dependent only on n), then we are practically home; because when pair (p, q) is revised, 
we can obtain a contradiction to our assumption AD(k) - (A\A)-l /2 - 6, from below. 
This follows from Lemma 3.2 and from AD(k) > (AA)- 1/2 - 6 - e; by taking e suf- 
ficiently small we may show that A?D(k) > (A\A)- 1/2 - 6, after revising the current 
pair (p, q). El 

Most of our effort, therefore, goes into verifying the above claim. We utilize a 
series of lemmas leading to this result. Before each lemma we try to give some motiva- 
tion for it. Detailed proofs are given in Appendix A. A closely related proof has also 
been used to show convergence of the cyclic Jacobi process for cyclic patterns in P, 
Nazareth [8]. 

THEOREM 5.1. Suppose Algorithm C is applied to a quadratic and uses some 
cyclic pattern E P. The current pair (p, q), at iteration k, is selected according to this 
cyclic pattern, with E2(k) either U or UT (if dpk)Ad(k) = 0 the directions may 
either be revised or left unaltered). 

Then D(k) converges to mutual conjugacy, as k oo. 

To prove this theorem we shall need the following notation and several lemmas. 
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Notation. (i) When it is unnecessary to specify the iteration number, we shall 

denote the ith direction in the set by d( ) and the matrix whose columns from the set 

of directions by D( 
(ii) Given a set of search directions d( ), d( )1,..., d( ),. ..,d( ) Figure 5.3 

develops the notation for certain sets of pairs of these directions. 

The following simple lemma will prove useful later. 

LEMMA 5.1. Consider normalized search directions dk+m),..., d(k+m)i 
d(k + m) obtained after (m + 1) iterations of Algorithm C. These (m + 1) iterations l+m 
consist of successively revising pairs (h, 1), (h, 1 + 1), . . . , (h, 1 + m), i.e., from 

f[h, 1, mi]. 

Assume during these iterations that no current pair had weight > 1/2; suppose 

further that Id (k+m)Ad(k+m)l > 6 (O < 6 < 1) for some pair (X, p) E Y[h, 1, m]. 

Then at iteration k 

Id (k)Ad (k) I > 5 12(m + 1 ) 

for some pair (p, v) E Y[h, 1, m]. 

LEMMA 5.2. Suppose at iteration k of Algorithm C the current pair is (p, q) and 

(5.2a) I dq )Adrkl e (O < e < ) 

If Id(k)Ad(k) l ?e/2 then, after revising (p, q), Id(k+ l )Ad(k+ l)I > e/4. 
p rq r 

Referring to Figure 5.4, Lemma 5.2 states that, under certain specified conditions, 

the weight on (r, q) cannot all be transferred to (p, r), when revising the current pair 

(p, q). The following lemma is a generalization of this. Referring to Figure 5.3, it says 

that under certain specified conditions the total weight on Z[h, 1, m] cannot all be 

transferred to & [h, 1] by successively revising pairs in 3[h, 1, m]. 

LEMMA 5.3. Given a set of search directions d(k), ... , d(k), ... , d(k) suppose h I 1 .. l+m 

that for some pair (X, p) e Z[h, 1, m] 

(5.2b) Id(A )Adkl P 
, , 0 < e < 1 

Suppose that (m + 1) further steps of Algorithm C are carried out, using succes- 

sive pairs (h, 1), (h, 1 + 1), . . . , (h, 1 + m), i.e. from f[h, 1, m]. 

Then there exist nonzero fractions Kl(m), K2(m) and K3(m) dependent only 

upon m and monotonically nonincreasing with m, which satisfy the following proposi- 

tion: 
If 

Id(k)Ad~k)I <K1(m)e for all (h, j) C e [h, 1], 

then at least one of the following two statements is true: 

(i) There exists a pair (p, v) e 'y[h, 1, m] such that Id(k+m)Ad(k+m)I >K2(m)e. 

(ii) Some current pair during these (m + 1) iterations has weight > K3(m)e. 

COROLLARY. The directions d(k), d(k) ,... , d() may be permuted arbitrarily. I 1+11 l+m 

It is clear therefore that Lemma 5.3 holds with the pairs in f[h, 1, m] revised in any 

order. 
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Notation 

j30 [h, 1, n1] R [h, 1, m] 

(h, h + l)(h, h + 2) (h, l-1) (1, l) (h, 1 + 1) I(h, I + 2) *(,1+ m) 

(h + 1, h + 2) (h + 1,1 - 1) (h + 1,1) (h + 1, + 1) (h + 1,1 + 2) (hi + 1,1 +? ) 

(I-2,1 (1-2,1+1) (1-2,1+2) (1 - 2,I + m) 

( (- 1, 1) (I- 1, 1 + 1) (I - 1,1 + 2) ... (I - 1,1 +m) 
X~~h, I - 1] \ p ~~~~~(1, 1 + 1) (1, 1 + 2) ... (1, 1 + m) 

\ (I+ 1,1 + 2) ( ? i + 1,1 + m) 

X[l, 1 + m] 

a [h,l] = {(h, j): h<I<l< 

3[h, 1, m] = {(h, j): 1 < j < I + m) 

-y[h, 1, m] = {(i, /): (i <j) & (h < i <1 ? +m) & (1 ?<I j <I+m)} 

Y[h, 1, m] = c[h, 1] U 3[h, 1, m] U -y[h, 1, m] 

Z[h, 1, m] = f[h, 1, m] U [h, 1, m] 

X[a, b] = {(i, j)la ?i< j Ib} 

R[h, 1, m] = {(i, j)1(i < j) & (h < i < I- 1) & (I < j A 1 + m)} 

FIGURE 5.3 

FIGURE 5.4 

The next lemma is a generalization of Lemma 5.3. Referring to Figure 5.3 and 

using the notation developed there, Lemma 5.4 states that under certain specified con- 

ditions the total weight on Z[h, 1, m] cannot all be transferred to X[h, 1 - 1] by revis- 

ing pairs in R [h, 1, m]. 

LEMMA 5.4. Given directions d(k),... , d(),.. , d() suppose that for some 

(X, p) E Z[h, 1, m] 

(5.2c) Id (k)Ad (k) I > a. 

Suppose that (I - h)(m + 1) further steps of Algorithm C are carried out, using 

pairs selected in sequence by rows from R [h, 1, m], i.e., (h, 1), . . . , (h, 1 + m), 

(h + 1, t), . . . , (h + 1, 1 + m), . . ., (I-1, L . . ., (- 1, 1 + m). 
Suppose that for all (i, j) E X[h, 1 - 1] 

(5T.2d) Iat dl)Ad () I <f Kt statements h - tre: 

Then at least one of the following two statements is true: 
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(i) At the end of this process some pair (p, v) E X[l, 1 + m] has weight > 

K2(m)l-he. 

(ii) Some current pair during the above (1 - h)(m + 1) iterations has weight > 

K3(M)K2(m)1-h- I 

COROLLARY 1. Given two sets of directions G1 = d( . . , d( )1} and G2 = 

{d( ),... , d( )m} form a list of pairs L as in Step B(i) of Procedure P. Then Lemma 

5.4 holds when successive pairs from R [h, 1, m] are revised in sequence given by list L. 

This follows immediately from application of the above proof to an appropriately per- 
muted set of initial directions and use of the Corollary to Lemma 5.3. 

COROLLARY 2. A similar result to Lemma 5.4 holds when the pairs in R [h, 1, m] 
are selected in sequence given by a list formed as in Step B(ii) of Procedure P. 

Our main lemma then follows: 
LEMMA 5.5. Consider Algorithm C applied to a quadratic using a cyclic pattern 

E P. Assume that the search directions d(k), ..., d(), at the start of a fresh cycle, 

satisfy 

(5.2e) Id(k)Ad(k) > e 

for some pair (X, p) E X[1, n]. 
Then there exists a nonzero fraction M(n) dependent only on n, such that the 

weight on some current pair during this cycle is > M(n)e. 
Theorem 5.1 is proved as outlined earlier in subsection 5.2 using these lemmas. 

See Appendix A. 

6. Conclusion. In earlier sections we have studied an attractive and simple way 
to revise the search directions that does not require knowledge of off-diagonal elements 
of D(k)TAD(k). One potential disadvantage is as follows. Assume convergence to 
mutual conjugacy and suppose the off-diagonal elements of D(k)TAD(k) are O(e), 
where e is small. Let us consider a pair (p, r) which has just been revised, so that its 
weight has been reduced from O(e) to zero. The next time a pair which involves p or r 
is revised, the weight on (p, r) could build up again to O(e). In order to curb this build- 
up it may be worthwhile, in the later stages of the iterative process, to incur the addi- 
tional function evaluations needed to estimate d(k)TAD(k). If we then use (2.4a) and 

P q 

(2.4b) to revise the current pair and renormalize p and q to be of different lengths in 
the A-norm, we observe the following. When the off-diagonal elements of 
D(k)TAD(k) are O(e), then Isin 01 is also O(e). A formal argument establishes that the 
total buildup of weight of a revised pair during a complete cycle of iterations is O(e2). 
The convergence is thus ultimately quadratic. Ultimate quadratic convergence of the 
cyclic Jacobi process applied to a matrix A with distinct eigenvalues is proven in a simi- 
lar way, Wilkinson [9]. An important difference between the two processes, however, 
is that regardless of eigenvalues we can always bound 0, by ensuring that the denomina- 
tor in (2.4b) does not vanish. In the Jacobi process renormalizations are not possible, 
since they would change the eigenvalues. 

We have seen why it may be profitable to switch in later stages of the iteration 
from using fixed matrices chosen from S to using more general plane rotations. The 
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set S can be generalized, the matrix 

4 1 -1 -1 1 

is a typical example for the case when four directions are simultaneously revised. Let 
us represent the class of such matrices, when n directions are simultaneously revised, by 
S[n] where n is even. Thus S = S[2]. 

By taking products of certain matrices in S one may obtain a matrix in S[n]. 
For example, a matrix in S[4] is given by U12U34U13U24 corresponding to the order- 
ing (1, 2)(3, 4)(1, 3)(2, 4). From the discussion of cycling this implies that for orthog- 
onal transformations chosen from S[n] convergence of the search directions to mutual 
conjugacy need not occur. Also the conclusions arrived at earlier about ultimate rate of 
convergence apply to any fixed class of orthogonal matrices. The use of classes of 
orthogonal transformations given by S[n] may, however, lead to fewer normalizations 
and hence fewer function evaluations. 
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topic of research and am deeply grateful for his encouragement, guidance and advice. 
Some useful comments by the referee are also gratefully acknowledged. 

Appendix A. 
Proof. Lemma 5.1. Suppose at some iteration the current pair is (h, q). By 

assumption Id( )Ad( )I < 'h. Thus 

(A.1 ) IId( ) + d( ) IIA 1. 

With (h, q) the current pair, consider two linked pairs (h, r) and (q, r) each hav- 
ing weight < w. (2.4i) and (A.1) together imply that after revising (h, q) the weights 
on (h, r) and (q, r) are each < 2w. 

Suppose, therefore, jd~k)Ad(k)l < 5/2(m + 1) for all (i, f) e Y[h, 1, m] . 
After one iteration no pair can have weight exceeding 5/2rn. Similarly, after 

(m + 1) iterations no pair can have weight exceeding 8. This contradicts our assump- 
tion. 

Therefore, there must exist a pair (p, v), at iteration k, for which Id k)Ad~k) I 
5/2(m?1). [a 

Proof. Lemma 5.2. Straightforward. 
Proof. Lemma 5.3. With h and 1 fixed, let us use induction on m. 
Suppose the lemma is true for all values up to (m - 1). We must show it to be 

true for m. 

1. If p < ? + m in (5.2b), then using the induction hypothesis and noting that the 
elements of -y [h, 1, m - 1] are unaffected by revising pair (h, 1 + m), we see that the 
the lemma holds with 
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2. If p = 1 + m, then after revising pairs (h, 1), . . . , (h, I + m - 1) the weight of 
some element in column I ? m, the- last column of Figure 5.3, must exceed e/2l. This 
follows from the Corollary to Lemma 3.1. 

2.1. If this element is (h, 1 + m), then (i) holds in the statement of Lemma 5.3 
with K3(m) = 1 /2m. 

2.2. Suppose not. Say then that this element is (i, 1 + m) where h < i < 1 + m. 
2.2.1. After revising (h, I + m) suppose the weight on (i, 1 + m) > Y4(6/2m). 

Then (i) holds in Lemma 5.3 with K2(m) = l/2m+2. 
2.2.2. Suppose the assumption in 2.2.1 does not hold, i.e., after revising (h, 1 + m) 

suppose 

IdJk+m)Ad(k+m)I < ?(e/2m). 

It then follows from Lemma 5.2 that prior to revising (h, 1 + m), the weight on pair 
(h, i) must have been > lh(e/2m). From Lemma 5.1 it follows that at the start of the 
process (i.e., at iteration k) some element in Y[h, 1, m] has weight > 1/2(,/2m)I/2m. 
This pair must be in Z[h, 1, m] provided we define K1(m) = Kj(m - 1)/22m+ 1. It 
follows from the induction hypothesis that after revising (h, 1), . . ., (h, 1 + m - 1) at 
least one of the following two statements must be true: 

(i) for some (p, v) F y(h, 1, m - 1) 

Id(k+m-1) Ad(k+m-1)I > K2(m - 2m+ 

(ii) some current pair has weight > K3(m - 1)(e/22m + 1). 
Furthermore, the pairs in 'y(h, 1, m - 1) are unaffected when revising the pair (h, 1 + m). 

3. We see, therefore, for all cases in 1 and 2 above, that suitable values for 
K1 (m), K2(m) and K3(m) are 

K) (m- 1) K2 (M-1) K3(m-1) 
22+ K2m= 22m+1 K3m= 22m+1 

4. To complete the argument by induction we must show that Lemma 5.3 is 
true when m = 0. Suppose some element in Z[h, 1, 0] has weight > e. If this is the 
current pair, then the lemma holds with K3(0) = 1. If not, then by setting K1(O) = ?M 
and K2(0) = ?/ we see that Lemma 5.3 is equivalent to Lemma 5.2. Therefore, 
Lemma 5.3 holds for m = 0. 

This completes the inductive argument. 
Proof. Lemma 5.4. With 1 and m fixed, the proof is by induction on h. 
Suppose the lemma is true for directions d( )1, ..., d( ),..., d() We must 

show it to be true for directions d( ), d( . ., d( ), . . ., d(+) Consider revising h h+1', 1 l+m~ 
pairs (h, 1), (h, / + 1), . . , (h, 1 + m). By assumption all pairs in X[h, 1 - 1] satisfy 
(5.2d). Thus, since K2(M) - 1, all pairs in set a [h, 1] have weight < K (m)e. Then, 
by Lemma 5.3 at least one of the following statements is true. 

(a) some element in y [h, 1, m] has weight > K2(M)C. 
(b) some current pair has weight > K3(M)C. 

Now, if (b) holds then for d( ), . . . , d- ) statement (ii) of Lemma 5.4 is true since 
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K3(m) - K3(m) [K2(m)]l h- . Suppose, therefore, (b) does not hold. Then (a) must 
hold. Furthermore no pair in X[h + 1, 1 - 1] is affected when revising pairs in 
j3[h, 1, m] since directions d( ) . . d( )i remain unaltered. Then, by the induction 

hypothesis, one of the following two statements is true: 
(i) at the end of the process some pair (p, v) E X[l, 1 + m] has weight > 

K2(m)1-h- 1 (K2(m)c); 

(ii) some current pair has weight > K3(m)K2 (m)- h - 2 (K2(m)e). Therefore, in 
all cases Lemma 5.4 is true for directions d(),. . , . ) h 1 l+m 

To complete the inductive argument, we need only observe that for directions 
d( d ( . . , d() Lemma 5.4 is equivalent to Lemma 5.3; and, therefore, the 1-'15 *l+m 
induction hypothesis holds for h = 1 - 1. 0 

Proof. Lemma 5.5. The proof is by induction on the number of directions. 
Suppose Lemma 5.5 is true for up to (n - 1) directions. We must show it to be 

true for n directions. 
Consider the first partition used to define the cyclic pattern employed. Say it is 

{d( ),.. ., } and d( d( )}. 

1. Suppose some element in X[1, 1 - 1] has weight exceeding 

(A.2) cX = K1(n - 1)[K2(n - 1)]1-2 e/2, 

where I = 1( - 1)/2. 
Then by the induction hypothesis some current pair has weight 

> M(l - 1){K1 (n - ) [K2(n - 1-2 /2,}e. 

Thus Lemma 5.5 is true with 

M(n) = M(l - 1){K1 (n - 1) [K2(n - 1)]1-2 /21I} 

2. Suppose, therefore, that no element in X[1, 1 - 1] has weight > W as defined 
by (A.2). After revising all elements in X[1, 1 - 1] in sequence given by the cyclic pat- 
tern, no element in X [ 1, 1 - 1 ] has weight > K 1 (n - [K2 (n - )]1-2 e. This follows 
from Lemma 5.1. It follows also that the pair (X, p) in (5.2e) must be C Z[1, 1, n - 1] . 

Then by Lemma 5.4, one of the following two statements is true: 
(i) after revising all elements in R [1, 1, n - 1] in sequence given by the cyclic 

pattern, some element in X[l, n] has weight > [K2(n - 0]1-le; 
(ii) some current pair has weight > K3(n - 1) [K2(n - ] 1-26. 

2.1. If (ii) holds, then Lemma 5.5 is true with 

M(n) = K3(n - l)[K2(n - l)]1-2. 

2.2. If (i) holds, then by the induction hypothesis applied to the directions d() 
d( ) some current pair has weight >M(n - 1 + 1)[K2(n - l)]1-le. Again 

Lemma 5.5 holds with 

M(n) = M(n - 1 + 1)[K2(n -1)]''. 

3. Therefore, taking 
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M(n) = {M(n - 1)K1 (n)K3(n) [K2(n)] n12N} 

where N = n(n - 1)/2 covers all cases in 1 and 2 above. We see that Lemma 5.5 is 
true for n directions. 

4. Trivially the lemma holds for two directions, with M(2) = 1, completing the 
proof by induction. 

Proof. Theorem 5.1. Using Lemma 5.5, the proof of Theorem 5.1 is straightforward. 
Suppose the search directions do not converge to a mutually conjugate set. 
As k -- 0o, 

AD (k) ---- A -1/2- _lb( > ?). 

Given e such that 0 < e < 1, let XD(k) > (AA-1/2 - 8 - e) for all k > K. 
We are assuming that the search directions do not converge to a mutually conju- 

gate set. Then there exists i > 0 such that for any k, some pair (i, I) dependent on k, 
has weight > A. 

Assume also we are at the start of a fresh cycle. Proceeding through a complete 

cycle of n(n - 1)/2 iterations, Lemma 5.5 implies that some current pair, (p, q) has 

weight > M(n),3 = y say, at iteration t. 

Then, using Lemma 3.2, 

) D(t) A- 1/2 - c - e 
-Dt (1) _2)1/2 

> 
(l - y2)1/2 

If e is chosen so that 

e < (/AA-' 1/2 - 5) [I-(_ (_ y2)1 /2 

then /AD(t+ 1 ) > A -A1/2 - 8. 

This contradicts our assumption that AXD(k) AA - 1/2 - 8, from below. 
Therefore, the n search directions d(i), . . ., d( ) must converge to a mutually 

conjugate set. El 
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